Data Throughput - Overview

 

 

 

I have been being asked to troubleshot the throughput issue so many times. Unfortunately my experience says "There is no clear/logical/deterministic way to troubleshoot for throughput test".

Then what are we supposed to do ? Are we supposed to rely on "Hit and Miss" strategy everytime we do the throughput test ? Is this process totally random ?

No at least we are not in such a worst case, fortunately. I think we can set some guidelines at least.

 

 

 

First thing to remember for throughput troubleshooting

 

One sentence. "Throughput troubleshooting is not simple at all.", "Don't expect it to be simple.". If I solved the problem with single shot, I would say "I was just lucky, It is not because I am technically competent".

 

Even troubleshooting with wired communication is not easy. Think about how many more factors would get involved in the data path.

 

That's all for the first thing. Now let's move to the second important thing for this issue. What is the second thing ?

 

It's "Don't give up. You will eventually find the solution!" -:). It is just matter of time and depend on how much dedicated you are during the troubleshoot.

 

Now the third things comes (Many people think this is the first thing since it sound more technical, but I don't think it is the case).

What I want you to do as the third item is "list up all the nodes from the data transmitter to the reciever, and follow all the steps without skipping anything.". One example I can give you is  (this is an example where you use a Network Emulator for the test).

    i) IP Application Software on PC (e.g, iperf, FileZilla)

    ii) TE port on PC (e.g, Ethernet Card).

    iii) TE port on throughput test equipment (e.g, Data packet port on Network Emulator)

    iv) PDCP layer on test equipment

    v) RLC layer on test equipment

    vi) MAC layer on test equipment

    vii) L1 (Transport and PHY) layer on test equipment

    viii) L1 (Transport and PHY) layer on UE (mobile phone or data card)

    ix) MAC layer on UE

    x) RLC Layer on UE

    xi) PDCP layer on UE

    xii) TE port on UE (e.g, Modem connector)

    xiii) TE port on PC (e.g, USB port the UE is connected to)

    xiv) IP Application Software on PC to which the UE is connected.

 

The more you understand on each of these items, the better position you are in for troubleshooting. (If you really enjoy your job as engineer, one of the topic I would recommend you is to try with throughput troubleshoot or optimization. To me it looks like an art at the same time being a technology).

 

Now you would ask "Which component on the list is most important, most critical factor for the throughput ?". I wish I had a simple/clear answer to this, but my experience says "the answer varies depending on the situation". Especially it would differ depending on what kind of radio technoloty your device is using. (e.g, Is it R99 WCDMA Device, HSDPA, HSPA+, LTE ?)

 

In addition to the major technical factors listed above, sometimes very simple things as follows make you spend several hours to several weeks for troubleshoot if you are in bad luck.

    i) LAN Cable type (Sometimes you have to use 'direct cable' and sometimes you have to use 'cross over' cable).

    ii) Category of LAN cable. (Is it Cat 5 cable or Cat 6 cable ?)

    iii) Ethernet Port Capability (Is it only for 10/100 M, or Gigabit ethernet ?)

    iv) Firewall setting on your PC (I will go back to this later in a separate section).

 

I will try to go through each type of radio technology and try to point out the important factor for that specific technology. (Try to memorize all the steps listed above sicne I will talk about the steps for each of the following sections).

 

 

What Number you want to get ?

 

I often see two extreme opinion on the result of throughput test result. Followings are those two with example LTE Cat3 MIMO download throughput.

 

Opinion 1 : I know the ideal max throughput is 100 Mbps, but I think it doesn't make much sense at least for a mobile device because in live network, you would never be in such a situation where a network allow such a huge resource allocation for any single UE and Radio Signal Quality also would not be good enough to achieve those throughput. so I am happy if the throughput result gives 30~40 Mbps.

 

Opinion 2 : The 3GPP sepecfication says the Max throughput for LTE Cat 3 is 100 Mbps, so I want to get exact 100 Mbps throughput displayed on my IP traffic monitoring tool.

 

I think there is problem with both opinion, but I would not say much on Opinion 1. Just think you are lucky if your customer has this kind of opinion -:).

 

I will talk something about Opinion 2 in this section. What would be the problem of this opinion ?

First he should not expect to get the same number on IP traffic monitor as 3GPP spec sheet shows, because what 3GPP spec sheets shows is the physical layer throughput, not the IP layer throughput. Between physical layer and IP layer, there are various kinds of overhead getting inserted. So it is natural to see a little bit less throughput on IP traffic monitor than the number on 3GPP spec sheets.

Then you may ask.. what if we want to measure only PHY throughput. Will I get the same Max throughput as the 3GPP spec document says ? In WCDMA, HSDPA, HSUPA probably 'Yes', but in LTE you would still have a little low throughput than the 3GPP spec value even in PHY throughput. It is because there is some subframes where you cannot allocate full RBs (100 RBs in case of 20Mhz, Cat 3). These frames are where SIBs are scheduled. Especailly SIB2 is causing a lot of overhead because it is supposed to be transmitted at subframe 5 at every two SFN. The amount of phyiscal layer overhead varies depending on how eNodeB allocate RBs for user data for the subframe where the SIB is transmitted. According to my experience, I saw roughly three different strategies for this case.

 

Option 1 : eNodeB still allocate RBs for the SIB transmission subframe, but the number of RB is a little bit lower than the Max RB

Option 2 : eNodeB does not allocate any RBs for user data at SIB transmission subframe.

Option 3 : eNodeB stop transmitting SIBs when connected state and allocate the MAX RBs even for the SIB transmission subframe.

 

I think live network eNodeB is using Option 1 and I saw most of test equipment is using Option 2 or Option 3. But Option 3 may cause some unexpected side effect and this options is not widely used. So in theory, you may get a little bit higher throughput if you use real eNodeB in 'test lab' (not in live network) comparing to test equipment. (You would get much less throughput in live network because you cannot control the eNodeB as you want and the signal quality is not as good as in the test lab. ).

 

In concolusion, whatever method you use you would not get the 100% same as specified in 3GPP specification. In my personal opinion, it would be considered OK if you can achieve around 90% of the ideal Max throughput without much of packet error. (If the difference between the test throughput and ideal throughput is due to packet area, not much due to overhead.. you'd better investigate further to find the root cause of the problem).