Python

 

 

 

 

Panda - Basic Tutorial

 

In this page, I will give you some of the basic operations for Panda. I will not go very deep into Panda functions in this page. This page is just for you to try some basic things without getting scared of too complicated operation right after you installed panda package.

 

Pandas provides two main data structures:

  • DataFrame: A two-dimensional, size-mutable, and heterogeneous tabular data structure with labeled axes (rows and columns). It is similar to a SQL table or an Excel spreadsheet and is the most widely-used data structure in Pandas. DataFrames can store data of different types (e.g., integers, floats, strings, etc.) and provide a variety of functionality for handling missing data, reshaping data, merging data, and performing various data manipulation operations.
  • Series: A one-dimensional labeled array capable of holding any data type (integers, floats, strings, Python objects, etc.). It is similar to a column in a DataFrame, and you can think of a DataFrame as a collection of Series objects. Series provides many of the same methods and operations as DataFrames but for one-dimensional data.

 

Some of the key features and functionality provided by the Pandas library include:

  • Data I/O: Pandas can read and write data from various file formats such as CSV, Excel, JSON, SQL, and more, making it convenient for working with data from different sources.
  • Data Cleaning and Preprocessing: Pandas provides functionality for handling missing data, duplicates, and data type conversions. It also allows for easy renaming and reordering of columns, as well as filtering and sorting of data.
  • Data Transformation: Pandas allows you to reshape, pivot, and transpose data, as well as perform operations like concatenation, merging, and joining of DataFrames.
  • Data Aggregation and Grouping: Pandas provides the groupby functionality, allowing you to group data based on specific conditions and apply aggregation functions such as sum, average, count, or custom functions.
  • Time Series Analysis: Pandas has robust support for working with time series data, including handling date and time data types, resampling, time zone conversions, and more.
  • Data Analysis: Pandas supports descriptive statistics, correlation analysis, and other statistical functions that can help you understand and explore your data.
  • Data Visualization: Although Pandas is not primarily a visualization library, it provides some built-in plotting functionality that is built on top of Matplotlib, making it convenient to visualize data directly from DataFrames and Series.

 

 

The data for this tutorial is from https://support.spatialkey.com/spatialkey-sample-csv-data/ (If this link does not work, try this).  

Download the file, unzip it and put it into the folder where Python is installed. Of course, you can put the file into other places. However, if you want to run the command in this tutorial as it is without modifying the data path, put the csv file in your Python installation folder.

 

The data structure of the csv file is as shown below.

 

NOTE : In most case in this note, I used the table shown above, but in some examples I used another table that I used in 'Data Analysis' page.

 

 

Following is the list of basic steps that you may would go through most commonly.

 

 

 

 

Importing Packages

 

In this tutorial, multiple packages listed below will be used. You can import all of the these package at the start or you can import them in the middle as you need it.

 

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import random as rd

 

 

 

Read csv file

 

First, read the whole csv file and store the data into a variable. There are many options for read_csv() function so that you can restructure the data or read only a subset of the data. But I used the simplest way to use this function in this tutorial.

 

NOTE : it is assumed that you put the following csv file in c:\tmp folder.

 

 

 

Read as it is

 

Following is to read the file in the form as it is. This is the default setting.

 

>>> df = pd.read_csv('C:\\tmp\\FL_insurance_sample.csv')

 

 

 

Read without specifying row names (row index)

 

When read_csv() function reads csv file, it makes some guess about the column header and row number. Usually it assumes that the first row as a the column header (column title) and the first column as the row number. According to my experience, if the first column is numeric data read_csv() seems to assume that the first column is row number (not the data). Sometimes this cause problem when the first column is a part of data (not the row number). In this case, you can tell read_csv() function that this files does not have any row number as follows.

 

>>> df = pd.read_csv('C:\\tmp\\FL_insurance_sample.csv', index_col=False)

 

 

 

Read with the first n lines skipped

 

You can also skip the first N lines when you are reading the csv file. You would see some of the csv files which has just description of the data, not the data itself. It is usefull to understand the nature of the data, but you don't need it when it comes to real data processing.

 

I have a csv file that looks as follows when you read it as it is.

 

>>> df = pd.read_csv('Sacramentorealestatetransactions.csv')

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

[5 rows x 12 columns]

 

 

Now I want to skip the first 2 lines (just for easy comparison) when I read the file. You can do it as shown below.

 

>>> df = pd.read_csv('Sacramentorealestatetransactions.csv',skiprows=2)

>>> df.head()

 

           51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902  -121.431028

0       2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305  -121.443839

1     2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835  -121.439146

2      6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470  -121.435768

3   5828 PEPPERMILL CT  SACRAMENTO  95841  ...  89921  38.662595  -121.327813

4  6048 OGDEN NASH WAY  SACRAMENTO  95842  ...  90895  38.681659  -121.351705

 

[5 rows x 12 columns]

 

 

 

Getting table dimensions (number of rows, number of colums)

 

Let's assume I have a table as shown below and I want to know the dimensions of the table, number of rows and number of columns.

 

If you just print out the table in compact form, you would get the demention at the end of the print.

 

>>> df

 

                  street             city    zip  ...   price   latitude   longitude

0           3526 HIGH ST       SACRAMENTO  95838  ...   59222  38.631913 -121.434879

1            51 OMAHA CT       SACRAMENTO  95823  ...   68212  38.478902 -121.431028

2         2796 BRANCH ST       SACRAMENTO  95815  ...   68880  38.618305 -121.443839

3       2805 JANETTE WAY       SACRAMENTO  95815  ...   69307  38.616835 -121.439146

4        6001 MCMAHON DR       SACRAMENTO  95824  ...   81900  38.519470 -121.435768

..                   ...              ...    ...  ...     ...        ...         ...

980   9169 GARLINGTON CT       SACRAMENTO  95829  ...  232425  38.457679 -121.359620

981      6932 RUSKUT WAY       SACRAMENTO  95823  ...  234000  38.499893 -121.458890

982    7933 DAFFODIL WAY   CITRUS HEIGHTS  95610  ...  235000  38.708824 -121.256803

983     8304 RED FOX WAY        ELK GROVE  95758  ...  235301  38.417000 -121.397424

984  3882 YELLOWSTONE LN  EL DORADO HILLS  95762  ...  235738  38.655245 -121.075915

 

[985 rows x 12 columns]

 

 

You can explicitely get the number of rows and the number of columns in following ways.

 

>>> len(df)

 

985

 

 

>>> len(df.columns)

 

12

 

 

 

Getting the first n rows

 

Just for quick check after you read the csv file, you may like to print the first few rows from the file and see the overall table structure. You can easily to this with the function head() as follows.

 

If you call head() with default configuration, it prints out the first 5 rows of the table.

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

[5 rows x 12 columns]

 

 

If you want to print out the header name only, you can do it by setting the number of rows in head() function.

 

>>> df.head(0)

 

Empty DataFrame

Columns: [street, city, zip, state, beds, baths, sq__ft, type, sale_date, price, latitude, longitude]

Index: []

 

 

You can print out arbitray number of rows by specifying the row numbers in head() function.

 

>>> df.head(3)

 

           street        city    zip  ...  price   latitude   longitude

0    3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1     51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2  2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

 

[3 rows x 12 columns]

 

 

 

Adding Column Header

 

If the data that you read from a csv files does not have column title(header), you can add the column headers as shown the example below.

 

>>> df = pd.read_csv('Sacramentorealestatetransactions.csv',skiprows=2)

>>> df.head()

 

           51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902  -121.431028

0       2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305  -121.443839

1     2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835  -121.439146

2      6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470  -121.435768

3   5828 PEPPERMILL CT  SACRAMENTO  95841  ...  89921  38.662595  -121.327813

4  6048 OGDEN NASH WAY  SACRAMENTO  95842  ...  90895  38.681659  -121.351705

 

[5 rows x 12 columns]

 

 

Now I want to add the colum names that I defined (Actually I just copied the column name from the orignal csv file -:)

 

>>> cols = ['street', 'city', 'zip', 'state', 'beds', 'baths', 'sq__ft', 'type', 'sale_date', 'price', 'latitude', 'longitude'];

>>> df.columns = cols;

>>> df.head()

                street        city    zip  ...  price   latitude   longitude

0       2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

1     2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

2      6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

3   5828 PEPPERMILL CT  SACRAMENTO  95841  ...  89921  38.662595 -121.327813

4  6048 OGDEN NASH WAY  SACRAMENTO  95842  ...  90895  38.681659 -121.351705

 

[5 rows x 12 columns]

 

 

 

Controlling the number of columns and rows for print

 

 

If you print the data table in panda, usually it prints in a compact form as shown below  

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

[5 rows x 12 columns]

 

 

You see some of the columns are hidden for simplicity. But in some case, you may want to get all the columns / rows printed out. For example, if you want to get all the columns printed out, you can change the panda option as follows.

 

>>> pd.set_option('display.max_columns', None)

 

Now print the table and it prints as follows.

 

>>> df.head()

 

 

             street        city    zip state  beds  baths  sq__ft  \

0      3526 HIGH ST  SACRAMENTO  95838    CA     2      1     836   

1       51 OMAHA CT  SACRAMENTO  95823    CA     3      1    1167   

2    2796 BRANCH ST  SACRAMENTO  95815    CA     2      1     796   

3  2805 JANETTE WAY  SACRAMENTO  95815    CA     2      1     852   

4   6001 MCMAHON DR  SACRAMENTO  95824    CA     2      1     797   

 

          type                     sale_date  price   latitude   longitude  

0  Residential  Wed May 21 00:00:00 EDT 2008  59222  38.631913 -121.434879  

1  Residential  Wed May 21 00:00:00 EDT 2008  68212  38.478902 -121.431028  

2  Residential  Wed May 21 00:00:00 EDT 2008  68880  38.618305 -121.443839  

3  Residential  Wed May 21 00:00:00 EDT 2008  69307  38.616835 -121.439146  

4  Residential  Wed May 21 00:00:00 EDT 2008  81900  38.519470 -121.435768  

 

If you want to go back to the compact print form, you can change it back as shown below.

 

>>> pd.set_option('display.max_columns', 7)

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

[5 rows x 12 columns]

 

 

 

Extract Row with Index

 

Now let's take a specific row from the read csv file. For example, I want to take out the first row of the data (table) using the command as shown below.

 

>>> df.ix[0]   // NOTE : ix[] is deprecated in latest release. you can use the following command instead.

>>> df.iloc[0]

policyID                   119736

statecode                      FL

county                CLAY COUNTY

eq_site_limit              498960

hu_site_limit              498960

fl_site_limit              498960

fr_site_limit              498960

tiv_2011                   498960

tiv_2012                   792149

eq_site_deductible              0

hu_site_deductible         9979.2

fl_site_deductible              0

fr_site_deductible              0

point_latitude            30.1023

point_longitude          -81.7118

line                  Residential

construction              Masonry

point_granularity               1

Name: 0, dtype: object

 

 

You can extract the multiple consecutive rows from the data (table) as shown below.

 

>>> df.ix[3:5]   // NOTE : ix[] is deprecated in latest release. you can use the following command instead.

>>> df.iloc[3:6]

 

   policyID statecode       county  eq_site_limit  hu_site_limit  \

3    333743        FL  CLAY COUNTY            0.0       79520.76

4    172534        FL  CLAY COUNTY            0.0      254281.50

5    785275        FL  CLAY COUNTY            0.0      515035.62

 

   fl_site_limit  fr_site_limit   tiv_2011   tiv_2012  eq_site_deductible  \

3            0.0            0.0   79520.76   86854.48                 0.0

4            0.0       254281.5  254281.50  246144.49                 0.0

5            0.0            0.0  515035.62  884419.17                 0.0

 

   hu_site_deductible  fl_site_deductible  fr_site_deductible  point_latitude

3                 0.0                 0.0                   0       30.063236

4                 0.0                 0.0                   0       30.060614

5                 0.0                 0.0                   0       30.063236

 

   point_longitude         line construction  point_granularity

3       -81.707703  Residential         Wood                  3

4       -81.702675  Residential         Wood                  1

5       -81.707703  Residential      Masonry                  3

 

 

You can extract multiple / non-consecutive rows using a array as shown below.

 

 

>>> df.ix[[3,5,9]]   // NOTE : ix[] is deprecated in latest release. You can use the following command instead

>>> df.iloc[[3,5,9]]

 

   policyID statecode       county  eq_site_limit  hu_site_limit  \

3    333743        FL  CLAY COUNTY            0.0       79520.76

5    785275        FL  CLAY COUNTY            0.0      515035.62

9    142071        FL  CLAY COUNTY       705600.0      705600.00

 

   fl_site_limit  fr_site_limit   tiv_2011    tiv_2012  eq_site_deductible  \

3            0.0            0.0   79520.76    86854.48                 0.0

5            0.0            0.0  515035.62   884419.17                 0.0

9       705600.0       705600.0  705600.00  1010842.56             14112.0

 

   hu_site_deductible  fl_site_deductible  fr_site_deductible  point_latitude  \

3                 0.0                 0.0                   0       30.063236

5                 0.0                 0.0                   0       30.063236

9             35280.0                 0.0                   0       30.100628

 

   point_longitude         line construction  point_granularity

3       -81.707703  Residential         Wood                  3

5       -81.707703  Residential      Masonry                  3

9       -81.703751  Residential      Masonry                  1

 

 

You can get the exactly same result as above using the following command.

 

>>> r = [3,5,9]

>>> df.ix[r]  // NOTE : ix[] is deprecated in latest release. you can use the following command instead

>>> df.iloc[r]

 

 

 

Extract Column with Column Name

 

You can extract a certain column from the csv file using the column title as shown below.

 

>>> df_eq = df['eq_site_limit']

 

You can print out the extracted data using print(). Don't worry even if the number of the extracted data is too big. I noticed that the print() print only a subset of the data as shown below.

 

>>> print(df_eq)

0         498960.0

1        1322376.3

2         190724.4

3              0.0

4              0.0

5              0.0

6              0.0

7         328500.0

8         315000.0

9         705600.0

10        831498.3

11             0.0

12             0.0

13             0.0

14             0.0

15             0.0

16             0.0

           ...

36621          0.0

36622          0.0

36623          0.0

36624          0.0

36625          0.0

36626          0.0

36627          0.0

36628          0.0

36629          0.0

36630    1297057.5

36631     173286.9

36632    1499781.6

36633     373488.3

Name: eq_site_limit, dtype: float64

 

 

You can extract the multiple columns as using the array (list) of column titles as shown below.

 

>>> df_eq = df[['eq_site_limit','eq_site_deductible']]

>>> print(df_eq)

       eq_site_limit  eq_site_deductible

0           498960.0                 0.0

1          1322376.3                 0.0

2           190724.4                 0.0

3                0.0                 0.0

4                0.0                 0.0

5                0.0                 0.0

6                0.0                 0.0

7           328500.0                 0.0

8           315000.0                 0.0

9           705600.0             14112.0

10          831498.3                 0.0

...              ...                 ...

36626            0.0                 0.0

36627            0.0                 0.0

36628            0.0                 0.0

36629            0.0                 0.0

36630      1297057.5                 0.0

36631       173286.9                 0.0

36632      1499781.6                 0.0

36633       373488.3                 0.0

 

[36634 rows x 2 columns]

 

 

 

Extract Columns with Index

 

In this example, I will use the following table (see this note on where to get this table).

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

[5 rows x 12 columns]

 

 

I want to get the first column of the table. you can do it as follows.

 

>>> df.iloc[:,0]

 

0             3526 HIGH ST

1              51 OMAHA CT

2           2796 BRANCH ST

3         2805 JANETTE WAY

4          6001 MCMAHON DR

              ...         

980     9169 GARLINGTON CT

981        6932 RUSKUT WAY

982      7933 DAFFODIL WAY

983       8304 RED FOX WAY

984    3882 YELLOWSTONE LN

Name: street, Length: 985, dtype: object

 

 

You can get the multiple columns as shown below.

 

>>> df.iloc[:,[0,3,8]]

 

                  street state                     sale_date

0           3526 HIGH ST    CA  Wed May 21 00:00:00 EDT 2008

1            51 OMAHA CT    CA  Wed May 21 00:00:00 EDT 2008

2         2796 BRANCH ST    CA  Wed May 21 00:00:00 EDT 2008

3       2805 JANETTE WAY    CA  Wed May 21 00:00:00 EDT 2008

4        6001 MCMAHON DR    CA  Wed May 21 00:00:00 EDT 2008

..                   ...   ...                           ...

980   9169 GARLINGTON CT    CA  Thu May 15 00:00:00 EDT 2008

981      6932 RUSKUT WAY    CA  Thu May 15 00:00:00 EDT 2008

982    7933 DAFFODIL WAY    CA  Thu May 15 00:00:00 EDT 2008

983     8304 RED FOX WAY    CA  Thu May 15 00:00:00 EDT 2008

984  3882 YELLOWSTONE LN    CA  Thu May 15 00:00:00 EDT 2008

 

[985 rows x 3 columns]

 

 

 

Listing All the Column Names

 

Let's assume that I have a table as shown below.

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

You see only some of the columns are printed and others are hidden. If you want to print out every column, see here. But in some case, you just want to know of the names of every column (not the whole dataset). In this case, you can get all the column names as shown below.  There are many other ways to do the same thing, but I think these are the simplest ways.

 

>>> list(df.columns)

['street', 'city', 'zip', 'state', 'beds', 'baths', 'sq__ft', 'type', 'sale_date', 'price', 'latitude', 'longitude']

 

 

>>> df.columns

Index(['street', 'city', 'zip', 'state', 'beds', 'baths', 'sq__ft', 'type',

       'sale_date', 'price', 'latitude', 'longitude'],

      dtype='object')

 

 

 

Finding Column Index from Column Name

 

Let's assume that I have a table as shown below and I want to know of the column index for 'price' column.

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

 

You can get the column index of the 'price' column using get_loc() function as shown below.

 

>>> df.columns.get_loc('price')

 

9

 

 

Resetting the row index

 

 

>>> df.reset_index()

 

or

 

>>> df.reset_index(drop = True)   # This prevent the old index from being added as a data column

 

 

 

Extracting a Subset (Sub Table)

 

Using the combination of Row Extraction and Column Extraction functionalities, you can cut out a subset (a subtable) from the csv file as shown in the following examples.

 

>>> df_subset = df.ix[3:10][['eq_site_limit','eq_site_deductible']]

// NOTE : ix[] is deprecated in latest release. You can use the following command instead

 

>>> df_subset = df.loc[3:11, ['eq_site_limit','eq_site_deductible']]

// NOTE : I used loc[] instead of iloc[]. iloc[] allows only numeric data. it does not take column name.

 

>>> print(df_subset)

   eq_site_limit  eq_site_deductible

3            0.0                 0.0

4            0.0                 0.0

5            0.0                 0.0

6            0.0                 0.0

7       328500.0                 0.0

8       315000.0                 0.0

9       705600.0             14112.0

10      831498.3                 0.0

 

 

>>> df_subset = df.ix[[3,5,10],['eq_site_limit','eq_site_deductible']]

// NOTE : ix[] is deprecated in latest release. You can use the following command instead

 

>>> df_subset = df.loc[[3,5,10], ['eq_site_limit','eq_site_deductible']]

// NOTE : I used loc[] instead of iloc[]. iloc[] allows only numeric data. it does not take column name.

 

>>> print(df_subset)

    eq_site_limit  eq_site_deductible

3             0.0                 0.0

5             0.0                 0.0

10       831498.3                 0.0

 

 

If you use a random array as row index array as shown below, you can get random sampling of the csv file.

 

>>> rndRow = [rd.randint(0,100) for i in range(10)]

>>> df_subset = df.ix[rndRow][['eq_site_limit','eq_site_deductible']]

// NOTE : ix[] is deprecated in latest release. You can use the following command instead

 

>>> df_subset = df.loc[rndRow, ['eq_site_limit','eq_site_deductible']]

// NOTE : I used loc[] instead of iloc[]. iloc[] allows only numeric data. it does not take column name.

 

>>> print(df_subset)

    eq_site_limit  eq_site_deductible

34            0.0                 0.0

43       213876.0                 0.0

1       1322376.3                 0.0

52            0.0                 0.0

3             0.0                 0.0

83        42300.0                 0.0

15            0.0                 0.0

86            0.0                 0.0

11            0.0                 0.0

21            0.0                 0.0

 

 

 

Inserting a Column

 

Let's assume that I have a table as shown below and I want to change the price in other currency with the application of a specific exchange rate and add the result as a new column.

 

>>> header = df.head()

>>> print(header)

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

 

now I want to extract the 'price' column, apply with an exchange rate and save it into a new dataset.

 

>>> df_price_cad = df['price'] * 1.4

>>> print(df_price_cad)

 

0       82910.8

1       95496.8

2       96432.0

3       97029.8

4      114660.0

         ...   

980    325395.0

981    327600.0

982    329000.0

983    329421.4

984    330033.2

Name: price, Length: 985, dtype: float64

 

 

Now I want to add this dataset as a new column right next to the 'price' column. This mean 'Insert the data df_price_cad at the column index 10 of the data set df with the column title = 'price_CAD'.  (NOTE : how can I know that the column index right next to 'price' column is 10 ?  See Finding the column index from the column name if you want to know the details).

 

>>> df.insert(10, 'price_CAD', df_price_cad)

>>> df.head()

 

             street        city    zip  ... price_CAD   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...   82910.8  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...   95496.8  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...   96432.0  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...   97029.8  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  114660.0  38.519470 -121.435768

 

[5 rows x 13 columns]

 

 

 

Deleting Columns

 

Let's assume that I have a table as shown below and I want to delete the colum 'zip'.

 

>>> header = df.head()

>>> print(header)

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

 

>>> del df['zip']

>>> df.head()

 

             street        city state  ...  price_CAD   latitude   longitude

0      3526 HIGH ST  SACRAMENTO    CA  ...    82910.8  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO    CA  ...    95496.8  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO    CA  ...    96432.0  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO    CA  ...    97029.8  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO    CA  ...   114660.0  38.519470 -121.435768

 

[5 rows x 12 columns]

 

 

You can do the same thing as follows. With drop() function, you can delete column or row by specifying 0 or 1 at the second argument. '1' in the second argument mean 'column', 0 mean row.

 

>>> df = df.drop('zip',1)

 

 

You may notice in the above example, we needed to reassign the df.drop() result to the variable. If you want to get the deleted result without the reassignment, you can do it as shown below.

 

>>> df.drop('zip', axis=1, inplace=True)

 

 

If you want to delete the multiple columns at once, you can do it as follows.

 

>>> df.drop(['city', 'zip'], axis=1, inplace=True)

 

If you want to delete the columns using the index number rather than column names, you can do it as follows.

 

>>> df.drop(df.columns[[1,2,5]], axis=1, inplace=True)

 

 

 

Processing a Column data with Map()

 

Let's suppose I have a column data as below and I want to split this data into separate items (like date, month, time, year etc).

 

>>> saledate = df['sale_date']

>>> saledate.head()

 

0    Wed May 21 00:00:00 EDT 2008

1    Wed May 21 00:00:00 EDT 2008

2    Wed May 21 00:00:00 EDT 2008

3    Wed May 21 00:00:00 EDT 2008

4    Wed May 21 00:00:00 EDT 2008

Name: sale_date, dtype: object

 

 

 

Map with lambda function (inline function)

 

One simple way to do this is to use Map() funtion as shown below (If you are not faimilar with map(), see this note first).

 

>>> saledate_item = saledate.map(lambda x:x.split(" "))

>>> saledate_item.head()

 

0    [Wed, May, 21, 00:00:00, EDT, 2008]

1    [Wed, May, 21, 00:00:00, EDT, 2008]

2    [Wed, May, 21, 00:00:00, EDT, 2008]

3    [Wed, May, 21, 00:00:00, EDT, 2008]

4    [Wed, May, 21, 00:00:00, EDT, 2008]

Name: sale_date, dtype: object

 

 

 

Map with a pre-defined function

 

lamda function is simple and handy, but it would be a little bit trick to do anything complicated. In this case, you can define the procedure as a predefined function and apply it in map() function as shown in the following example.

 

def mm_yyyy(d) :

    dList = d.split(" ");

    dStr = dList[1] + ":" + dList[5];

    return dStr;

 

 

>>> df_mm_yyyy = df['sale_date'].map(mm_yyyy);

>>> df_mm_yyyy

 

0      May:2008

1      May:2008

2      May:2008

3      May:2008

4      May:2008

         ...   

980    May:2008

981    May:2008

982    May:2008

983    May:2008

984    May:2008

Name: sale_date, Length: 985, dtype: object

 

 

Save/Export a Dataset to CSV file

 

You can save/export a data set that you created to a csv file using to_csv() function as shown in the examples shown in this section.

 

>>> df_subset = df.loc[[3,5,9],['street','city']]

>>> print(df_subset)

 

               street        city

3    2805 JANETTE WAY  SACRAMENTO

5  5828 PEPPERMILL CT  SACRAMENTO

9        7325 10TH ST   RIO LINDA

 

 

 

Save it as it is

 

If you save the data set to csv file in default configuration, it saves not only the data but also the index and the column name as shown below.

 

>>> df_subset.to_csv('C:\\tmp\\df_subset.csv')

 

 

 

 

Save it without row index (Supressing the row index)

 

If you don't want to save the index value, you can suppress it as follows.

 

>>> df_subset.to_csv('C:\\tmp\\df_subset.csv',index=False)

 

 

 

 

Save it without Column Header

 

If you don't want to save the header (column name), you can suppress it as follows.

 

>>> df_subset.to_csv('C:\\tmp\\df_subset.csv',header=False)

 

 

 

 

Save it without Row index and Column Header

 

If you don't want to suppress both index and header, you can do it as follows.

 

>>> df_subset.to_csv('C:\\tmp\\df_subset.csv',index=False,header=False)

 

 

 

 

Save it with your own column header

 

If  you want to save the file with your own column name, you can specify the column name as shown below.

 

>>> df_subset.to_csv('C:\\tmp\\df_subset.csv',header=['column1','column2'])

 

 

 

Chaning Numeric Type

 

You can change the type of numeric data as follows. Note that all the data in the dataset should be numeric data for the numeric type specification to be applied. Otherwise, you would get errors.

 

>>> df['longitude'].astype(int)

 

0     -121

1     -121

2     -121

3     -121

4     -121

      ...

980   -121

981   -121

982   -121

983   -121

984   -121

Name: longitude, Length: 985, dtype: int32

 

 

>>> df['longitude'].astype(float)

 

0     -121.434879

1     -121.431028

2     -121.443839

3     -121.439146

4     -121.435768

          ...    

980   -121.359620

981   -121.458890

982   -121.256803

983   -121.397424

984   -121.075915

Name: longitude, Length: 985, dtype: float64

 

 

 

Replacing NaN with 0

 

In many cases, you may get a data set (usually as a result of numerical operations) with a lot of NaN but you don't like it.

 

>>> BedCountInCity = df.pivot_table(values='price',index=['city'],columns=['beds'],aggfunc=lambda x: x.count())

>>> BedCountInCity.head()

 

beds              0   1    2  ...    5   6   8

city                          ...             

ANTELOPE        NaN NaN  3.0  ...  3.0 NaN NaN

AUBURN          NaN NaN  2.0  ...  NaN NaN NaN

CAMERON PARK    1.0 NaN  3.0  ...  NaN NaN NaN

CARMICHAEL      NaN NaN  4.0  ...  NaN NaN NaN

CITRUS HEIGHTS  NaN NaN  4.0  ...  1.0 NaN NaN

 

[5 rows x 8 columns]

 

 

You can easily replace the NaN with a specific number (usually 0) as shown below.

 

>>> BedCountInCity.fillna(0)

 

beds                0    1     2  ...     5    6    8

city                              ...                

ANTELOPE          0.0  0.0   3.0  ...   3.0  0.0  0.0

AUBURN            0.0  0.0   2.0  ...   0.0  0.0  0.0

CAMERON PARK      1.0  0.0   3.0  ...   0.0  0.0  0.0

CARMICHAEL        0.0  0.0   4.0  ...   0.0  0.0  0.0

CITRUS HEIGHTS    0.0  0.0   4.0  ...   1.0  0.0  0.0

COOL              0.0  0.0   0.0  ...   0.0  0.0  0.0

DIAMOND SPRINGS   0.0  0.0   0.0  ...   0.0  0.0  0.0

EL DORADO         0.0  0.0   1.0  ...   0.0  0.0  0.0

 

 

 

Converting List data to a Table (DataFormatter)

 

I have a list data as shown below and I want to convert this data into a pands table (dataformatter).  NOTE : See this if you want to know how I got this data.

 

>>> df_saledate_item

                               sale_date

0    [Wed, May, 21, 00:00:00, EDT, 2008]

1    [Wed, May, 21, 00:00:00, EDT, 2008]

2    [Wed, May, 21, 00:00:00, EDT, 2008]

3    [Wed, May, 21, 00:00:00, EDT, 2008]

4    [Wed, May, 21, 00:00:00, EDT, 2008]

..                                   ...

980  [Thu, May, 15, 00:00:00, EDT, 2008]

981  [Thu, May, 15, 00:00:00, EDT, 2008]

982  [Thu, May, 15, 00:00:00, EDT, 2008]

983  [Thu, May, 15, 00:00:00, EDT, 2008]

984  [Thu, May, 15, 00:00:00, EDT, 2008]

 

[985 rows x 1 columns]

 

 

You can convert this list into a panda table as shown below.

 

>>> df_saledate_item = pd.DataFrame(saledate_item.tolist(),columns=["Day","Month","Date","Time","Zone","Year"])

>>> df_saledate_item

 

     Day Month Date      Time Zone  Year

0    Wed   May   21  00:00:00  EDT  2008

1    Wed   May   21  00:00:00  EDT  2008

2    Wed   May   21  00:00:00  EDT  2008

3    Wed   May   21  00:00:00  EDT  2008

4    Wed   May   21  00:00:00  EDT  2008

..   ...   ...  ...       ...  ...   ...

980  Thu   May   15  00:00:00  EDT  2008

981  Thu   May   15  00:00:00  EDT  2008

982  Thu   May   15  00:00:00  EDT  2008

983  Thu   May   15  00:00:00  EDT  2008

984  Thu   May   15  00:00:00  EDT  2008

 

[985 rows x 6 columns]

 

 

 

Combining Two Tables in Columns

 

Let's suppose I have two tables as shown below and I want to join the two tables in Column.

 

this is the first table named df.

 

>>> df.head()

 

             street        city    zip  ...  price   latitude   longitude

0      3526 HIGH ST  SACRAMENTO  95838  ...  59222  38.631913 -121.434879

1       51 OMAHA CT  SACRAMENTO  95823  ...  68212  38.478902 -121.431028

2    2796 BRANCH ST  SACRAMENTO  95815  ...  68880  38.618305 -121.443839

3  2805 JANETTE WAY  SACRAMENTO  95815  ...  69307  38.616835 -121.439146

4   6001 MCMAHON DR  SACRAMENTO  95824  ...  81900  38.519470 -121.435768

 

[5 rows x 12 columns]

 

Just for the reference, let's list all the column names.

 

>>> list(df.columns)

 

['street', 'city', 'zip', 'state', 'beds', 'baths', 'sq__ft', 'type', 'sale_date', 'price', 'latitude', 'longitude']

 

 

Now I have another table shown below.  (NOTE :  For your reference, this table is made from a sale_date in the table df. You may refer to this section if you want to know how I created this table).

 

>>> df_saledate_item.head()

 

   Day Month Date      Time Zone  Year

0  Wed   May   21  00:00:00  EDT  2008

1  Wed   May   21  00:00:00  EDT  2008

2  Wed   May   21  00:00:00  EDT  2008

3  Wed   May   21  00:00:00  EDT  2008

4  Wed   May   21  00:00:00  EDT  2008

 

 

Now I want to combine the two table df and df_saledate_item into a new table in columns.

 

NOTE : axis = 1 parameter is key in this case. It specify 'column', if you omit it or set it to 'axis = 0', the concat() combines the tables in row.

 

>>> df_new_dateformat = pd.concat([df,df_saledate_item],axis=1)

>>> df_new_dateformat.head()

 

             street        city    zip state  ...  Date      Time  Zone  Year

0      3526 HIGH ST  SACRAMENTO  95838    CA  ...    21  00:00:00   EDT  2008

1       51 OMAHA CT  SACRAMENTO  95823    CA  ...    21  00:00:00   EDT  2008

2    2796 BRANCH ST  SACRAMENTO  95815    CA  ...    21  00:00:00   EDT  2008

3  2805 JANETTE WAY  SACRAMENTO  95815    CA  ...    21  00:00:00   EDT  2008

4   6001 MCMAHON DR  SACRAMENTO  95824    CA  ...    21  00:00:00   EDT  2008

 

[5 rows x 18 columns]

 

 

Now print all the column names and see if the new table contains every columns from the two tables.

 

>>> list(df_new_dateformat.columns)

 

['street', 'city', 'zip', 'state', 'beds', 'baths', 'sq__ft', 'type', 'sale_date', 'price', 'latitude', 'longitude', 'Day', 'Month', 'Date', 'Time', 'Zone', 'Year']

 

 

 

Filter

 

All the examples in this section is based on a table shown below. I would not print out this original table in every example unless it is really necessary.

 

>>> df

 

                  street             city    zip  ...   price   latitude   longitude

0           3526 HIGH ST       SACRAMENTO  95838  ...   59222  38.631913 -121.434879

1            51 OMAHA CT       SACRAMENTO  95823  ...   68212  38.478902 -121.431028

2         2796 BRANCH ST       SACRAMENTO  95815  ...   68880  38.618305 -121.443839

3       2805 JANETTE WAY       SACRAMENTO  95815  ...   69307  38.616835 -121.439146

4        6001 MCMAHON DR       SACRAMENTO  95824  ...   81900  38.519470 -121.435768

..                   ...              ...    ...  ...     ...        ...         ...

980   9169 GARLINGTON CT       SACRAMENTO  95829  ...  232425  38.457679 -121.359620

981      6932 RUSKUT WAY       SACRAMENTO  95823  ...  234000  38.499893 -121.458890

982    7933 DAFFODIL WAY   CITRUS HEIGHTS  95610  ...  235000  38.708824 -121.256803

983     8304 RED FOX WAY        ELK GROVE  95758  ...  235301  38.417000 -121.397424

984  3882 YELLOWSTONE LN  EL DORADO HILLS  95762  ...  235738  38.655245 -121.075915

 

[985 rows x 12 columns]

 

 

The list of column names are as follows.

 

>>> list(df.columns)

['street', 'city', 'zip', 'state', 'beds', 'baths', 'sq__ft', 'type', 'sale_date', 'price', 'latitude', 'longitude']

 

 

 

Selecting Rows with a specified column value

 

This example shows all the rows where the city name is 'ELK GROVE'

 

>>> df[df['city']=='ELK GROVE']

 

                           street       city  ...   latitude   longitude

30   5201 LAGUNA OAKS DR Unit 140  ELK GROVE  ...  38.423251 -121.444489

34   5201 LAGUNA OAKS DR Unit 162  ELK GROVE  ...  38.423251 -121.444489

42                   8718 ELK WAY  ELK GROVE  ...  38.416530 -121.379653

50                   9417 SARA ST  ELK GROVE  ...  38.415518 -121.370527

66                 7005 TIANT WAY  ELK GROVE  ...  38.422811 -121.423285

..                            ...        ...  ...        ...         ...

964               10085 ATKINS DR  ELK GROVE  ...  38.390893 -121.437821

965           9185 CERROLINDA CIR  ELK GROVE  ...  38.424497 -121.426595

975           5024 CHAMBERLIN CIR  ELK GROVE  ...  38.389756 -121.446246

979              1909 YARNELL WAY  ELK GROVE  ...  38.417382 -121.484325

983              8304 RED FOX WAY  ELK GROVE  ...  38.417000 -121.397424

 

[114 rows x 12 columns]

 

 

 

Selecting Rows with multiple column values in OR condition

 

If you want to filter the rows with multiple OR criteria, you can do as show below.

If the criteria is string comparison or comparing with any of listable items, you can simply do it as shown below.

 

 

>>> df[df['city'].isin(['ELK GROVE','SACRAMENTO'])]

 

                 street        city    zip  ...   price   latitude   longitude

0          3526 HIGH ST  SACRAMENTO  95838  ...   59222  38.631913 -121.434879

1           51 OMAHA CT  SACRAMENTO  95823  ...   68212  38.478902 -121.431028

2        2796 BRANCH ST  SACRAMENTO  95815  ...   68880  38.618305 -121.443839

3      2805 JANETTE WAY  SACRAMENTO  95815  ...   69307  38.616835 -121.439146

4       6001 MCMAHON DR  SACRAMENTO  95824  ...   81900  38.519470 -121.435768

..                  ...         ...    ...  ...     ...        ...         ...

978    5601 REXLEIGH DR  SACRAMENTO  95823  ...  230000  38.445342 -121.441504

979    1909 YARNELL WAY   ELK GROVE  95758  ...  230000  38.417382 -121.484325

980  9169 GARLINGTON CT  SACRAMENTO  95829  ...  232425  38.457679 -121.359620

981     6932 RUSKUT WAY  SACRAMENTO  95823  ...  234000  38.499893 -121.458890

983    8304 RED FOX WAY   ELK GROVE  95758  ...  235301  38.417000 -121.397424

 

[553 rows x 12 columns]

 

Or you can do it using the '|' operator as shown below.

 

>>> df[(df['city']=='ELK GROVE') | (df['city']=='SACRAMENTO')]

 

                 street        city    zip  ...   price   latitude   longitude

0          3526 HIGH ST  SACRAMENTO  95838  ...   59222  38.631913 -121.434879

1           51 OMAHA CT  SACRAMENTO  95823  ...   68212  38.478902 -121.431028

2        2796 BRANCH ST  SACRAMENTO  95815  ...   68880  38.618305 -121.443839

3      2805 JANETTE WAY  SACRAMENTO  95815  ...   69307  38.616835 -121.439146

4       6001 MCMAHON DR  SACRAMENTO  95824  ...   81900  38.519470 -121.435768

..                  ...         ...    ...  ...     ...        ...         ...

978    5601 REXLEIGH DR  SACRAMENTO  95823  ...  230000  38.445342 -121.441504

979    1909 YARNELL WAY   ELK GROVE  95758  ...  230000  38.417382 -121.484325

980  9169 GARLINGTON CT  SACRAMENTO  95829  ...  232425  38.457679 -121.359620

981     6932 RUSKUT WAY  SACRAMENTO  95823  ...  234000  38.499893 -121.458890

983    8304 RED FOX WAY   ELK GROVE  95758  ...  235301  38.417000 -121.397424

 

[553 rows x 12 columns]

 

 

 

Concatenating Tables

 

This section will show you how to concatenate multiple tables. Depending on the structure of the table, the structure of the concatenated table would vary.

 

To make it easier to check the result of the concatenation, I will create simple tables as shown below rather than the one from csv files.

 

 

import pandas as pd

 

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],

                    'B': ['B0', 'B1', 'B2', 'B3']});

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],

                    'B': ['B4', 'B5', 'B6', 'B7']});

df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],

                    'C': ['C0', 'C1', 'C2', 'C3']});

df4 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],

                    'D': ['D0', 'C1', 'C2', 'C3']});

 

 

For visualization of structure of each table, let's print out each of table and see how it looks like.

 

>>> df1

    A   B

0  A0  B0

1  A1  B1

2  A2  B2

3  A3  B3

 

>>> df2

    A   B

0  A4  B4

1  A5  B5

2  A6  B6

3  A7  B7

 

>>> df3

     A   C

0   A8  C0

1   A9  C1

2  A10  C2

3  A11  C3

 

>>> df4

    A   D

0  A0  D0

1  A1  C1

2  A2  C2

3  A3  C3

 

 

Now let's concatenate these tables and see how the result look like.

 

>>> df_concat = pd.concat([df1,df2]);

>>> df_concat

    A   B

0  A0  B0

1  A1  B1

2  A2  B2

3  A3  B3

0  A4  B4

1  A5  B5

2  A6  B6

3  A7  B7

 

 

>>> df_concat = pd.concat([df1,df3]);

>>> df_concat

     A    B    C

0   A0   B0  NaN

1   A1   B1  NaN

2   A2   B2  NaN

3   A3   B3  NaN

0   A8  NaN   C0

1   A9  NaN   C1

2  A10  NaN   C2

3  A11  NaN   C3

 

 

>>> df_concat = pd.concat([df1,df4]);

>>> df_concat

    A    B    D

0  A0   B0  NaN

1  A1   B1  NaN

2  A2   B2  NaN

3  A3   B3  NaN

0  A0  NaN   D0

1  A1  NaN   C1

2  A2  NaN   C2

3  A3  NaN   C3

 

 

 

Converting a List to a Panda DataFrame

 

Let's suppose I have a list shown below and I want to convert it into a pandas table so that I can use all the handy functions to my list.

 

>>> myList = [[1,2,3],[4,5,6],[7,8,9]]

 

>>> myList

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

 

 

You can easily convert this list into a pandas table as shown below (Super simple !!!!)

 

>>> df = pd.DataFrame(myList)

>>> df

   0  1  2

0  1  2  3

1  4  5  6

2  7  8  9

 

 

Then you can add your own column header as shown below if you like

 

>>> df.columns = ['item 1','item2','item3'];

>>> df

   item 1  item2  item3

0       1      2      3

1       4      5      6

2       7      8      9

 

 

 

Plot Data

 

You can easily visualize (e.g, plot) the data using functions in matplotlib as shown in this section.

 

First, you need to import the matplotlib package as shown below.

 

>>> import matplotlib.pyplot as plt  

    #  in manu tutorial, they say 'import matplotlib as plt' but this didn't work in my setup. When I tried plot() function, it gave me an errror as shown below. So I tried 'import matplotlib.pyplot as plt' and it worked.

      >>> plt.plot(df_eq)

      Traceback (most recent call last):

        File "<stdin>", line 1, in <module>

      AttributeError: module 'matplotlib' has no attribute 'plot'

 

Then extract a dataset as in the following example.

 

>>> df_eq = df['eq_site_limit']

 

Then plot it as shown below. However, just running a plot() function would not display any graph. It just create a plot in the memory without displaying it on the screen.

 

>>> plt.plot(df_eq)

[<matplotlib.lines.Line2D object at 0x0612E770>]

 

In order to display the plot, you need to run show() function as shown below.

 

>>> plt.show()